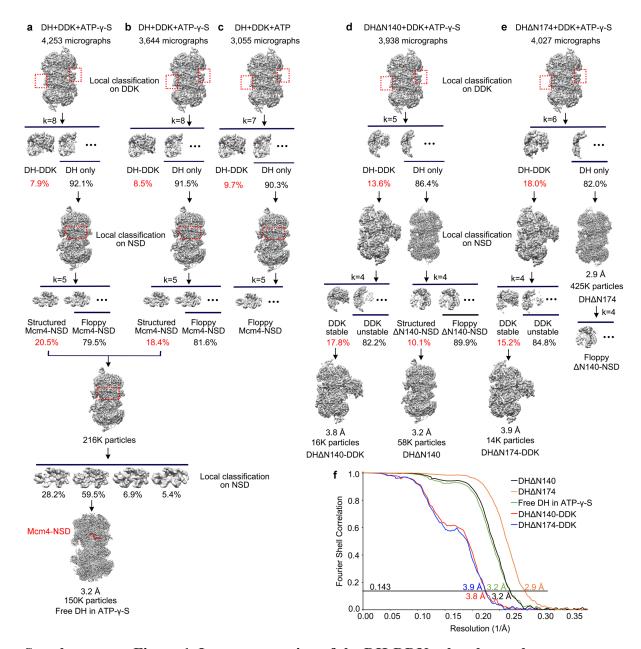
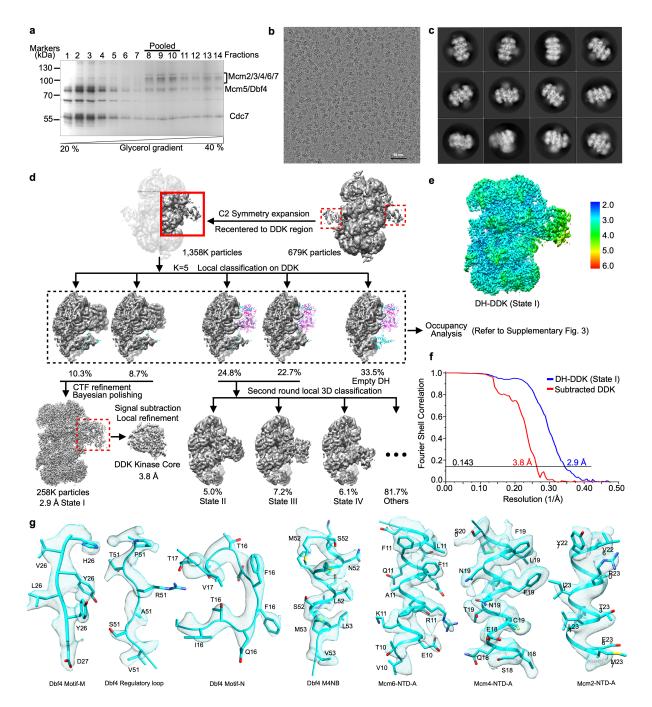
### **Supplementary Information**


## Structural Insight into the MCM Double Hexamer Activation by Dbf4-Cdc7 Kinase

Jiaxuan Cheng<sup>1#</sup>, Ningning Li<sup>1#</sup>, Yunjing Huo<sup>2</sup>, Shangyu Dang<sup>3</sup>, Bik-Kwoon Tye<sup>4,5\*</sup>, Ning Gao<sup>1\*</sup> & Yuanliang Zhai<sup>2\*</sup>

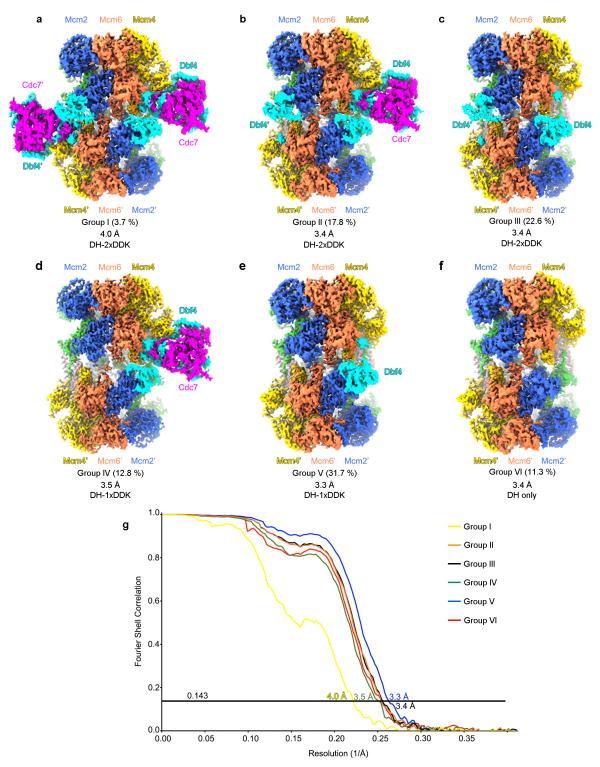
\*These authors contributed equally to this work


\*Co-corresponding authors

This document contains 7 Supplementary Figures and 3 Supplementary Tables.

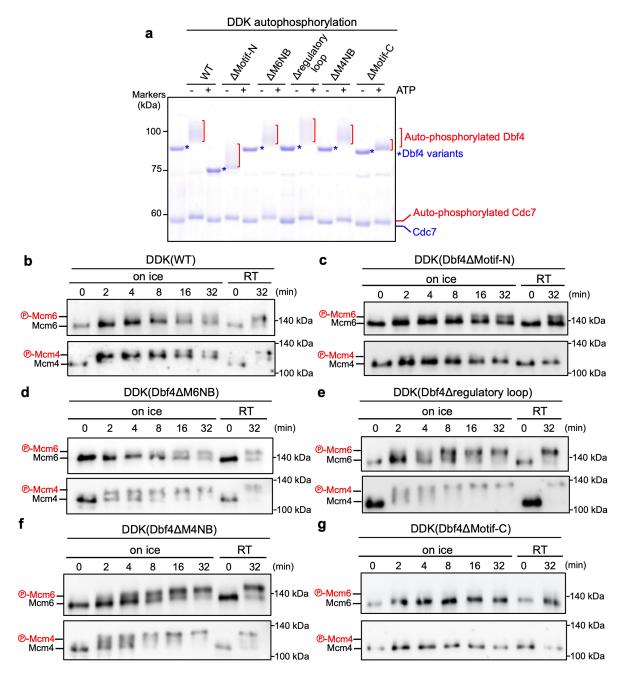


Supplementary Figure 1. Image processing of the DH-DDK related samples


**a-e,** Workflow of image processing for the DH-DDK samples treated with either ATP- $\gamma$ -S (**a** and **b**) or ATP (**c**) and the mutant DH-DDK samples including DH $\Delta$ N140 (**d**) and DH $\Delta$ N174 (**e**). See Materials and Methods for details. Crosslinking was not applied to these samples. Notably, structures (major populations) of the DH-DDK treated with either ATP- $\gamma$ -S or ATP are almost identical to the State I structure of the DH-DDK (ATP- $\gamma$ -S) stabilized by crosslinking. **f**, FSC curves of the final density maps for the indicated complexes.

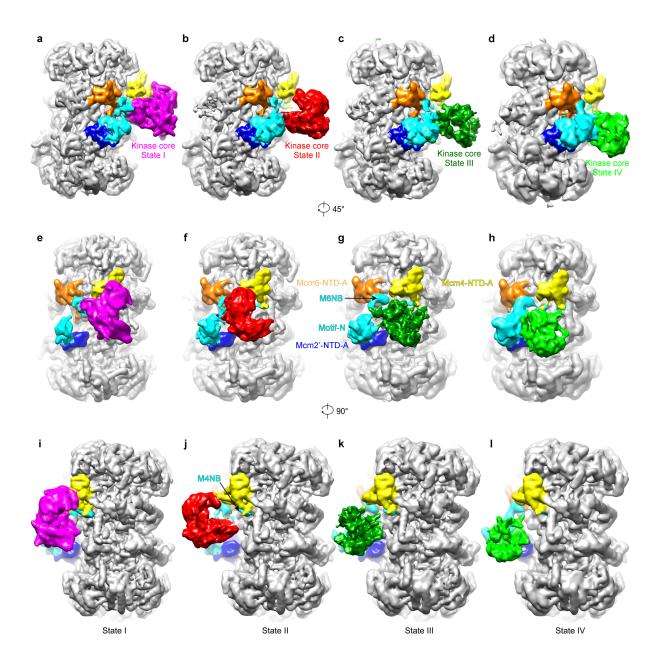


#### Supplementary Figure 2. Image processing of the crosslinked DDK-DH sample

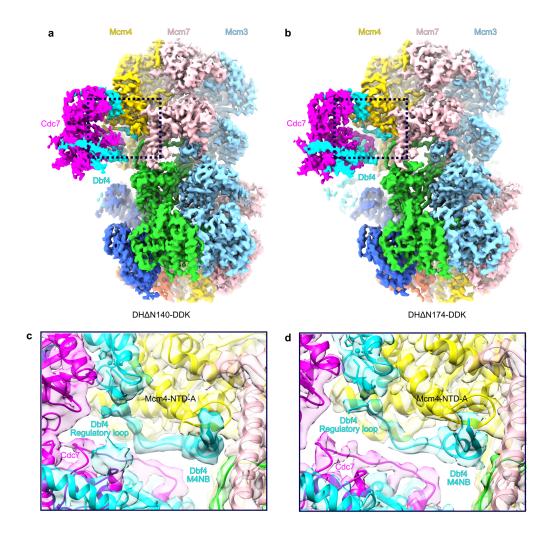

**a**, SDS-PAGE analysis of the glycerol gradient fractions. The mixture of DDK and DH (no fixation) was subjected to 20-40% glycerol gradient centrifugation. Fractions were collected, resolved on SDS-PAGE and visualized by silver staining. This analysis showed that peak fractions (8-10) contain intact DH-DDK complexes. A biological replicate of the experiment was performed with similar result. Based on this result, similar fractions containing crosslinked samples after grafix were pooled and processed for further EM analysis. **b**, A representative raw cryo-EM image of the crosslinked DH-DDK sample. A total of 5,184 raw micrographs were selected for data processing. **c**, 2D class averages of the crosslinked DH-DDK sample. **d**, Workflow of image processing of the DH-DDK particles. See Materials and Methods for details. During the second round of local 3D classification, the particles were split into 15

classes. We identified three States (II-IV, accounting for 18.3% of the subset II particles) of DDK on the DH that exhibit relatively stable kinase core of DDK residing in different wobbling positions. The remaining 81.7% particles accounting for 12 classes (others, not shown). DDK densities in these classes are clearly present, but more fragmented, indicating that DDK likely has a continuous movement on the DH. e, The final density map of the DH-DDK (State I) color-coded to indicate the range of local resolution. f, FSC curves of the final density maps for the indicated complexes. g, Local densities of representative regions for Dbf4 and NTD-As of Mcm2/4/6 from the final cryo-EM density map of the DH-DDK (State I).



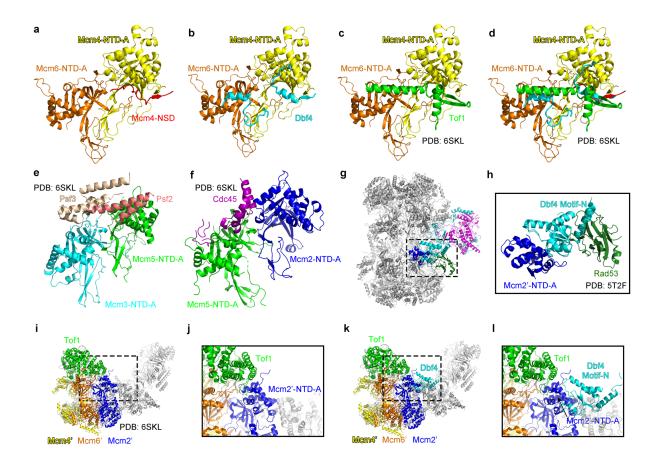

Supplementary Figure 3. Stochastic binding of DDK to the DH.

**a-c**, Side views of the segmented cryo-EM density maps of the DH bound with two DDKs (Groups I-III). These maps differ primarily in the conformation of kinase core. **d-e**, Side views of the segmented cryo-EM density maps of the DH bound with one DDK (Groups IV-V). **f**, Side views of the cryo-EM density maps of the free DH (Group VI). **g**, FSC curves of the density maps of Groups I-VI.




#### Supplementary Figure 4. Kinase activities of various DDK constructs toward MCM-DH.

**a**, SDS-PAGE (7.5% gel) analysis of the WT and mutant DDK preparations and their associated kinase activities through in vitro DDK autophosphorylation assay. The indicated bands were visualized by Coomassie blue staining. **b-g**, The kinase reactions with MCM-DH and relevant DDKs were conducted on ice (left lanes) or at room temperature (RT, two right lanes) at indicated time points and analyzed by SDS-PAGE (6 % gel) and immunoblotting of Mcm4 and Mcm6. Perepresents the phosphorylated form of the relevant MCM subunit. A biological replicate of each experiment was performed with similar results.




**Supplementary Figure 5.** Wobbling conformations of the kinase core of DDK on the DH. **a-d**, Comparison of the conformations of the kinase core from the different states (I-IV) of the DH-DDK complex. Density maps of the kinase core region and the NTD-As of Mcm2', Mcm6 and Mcm4 are color-coded and labelled as indicated. **e-h**, Same as **a-d** but shown with a 45° rotation along the cylinder axis. **i-l**, Same as **e-h** but shown with a further 90° rotation.



#### Supplementary Figure 6. DDK docking onto the mutant DHs.

- **a, b** Side views of the cryo-EM maps of the DHΔN140-DDK (**a**) and DHΔN174-DDK (**b**), highlighting the kinase core of DDK engaging with the NTD-A of Mcm4.
- **c, d** Magnified views of the boxed regions in (**a**) and (**b**) respectively with the atomic model superimposed. Note that the conformations of the M4NB and regulatory loop of Dbf4 in these mutants are almost identical as those in the WT DH-DDK (State I), and the NSD motif is not required for DDK docking onto the NTD-A of Mcm4.



# Supplementary Figure 7. The NTD-As of MCM subunits serving as distinct docking sites for various replication factors.

a, Mcm4-NSD (red) is nested on the NTD-A of Mcm4 (yellow). b, M6NB and M4NB of Dbf4 (cyan) are anchored on the NTD-As of Mcm6 (orange) and Mcm4 (yellow) respectively. c, Tofl (green) associates with the NTD-As of Mcm6 and Mcm4. For clarity, only the indicated regions of the replisome structure (PDB code 6SKL) are shown. d, Superimposition of the structures of DH, DH-DDK and replisome (PDB code 6SKL) using DH as a reference. Note that Mcm4-NSD, Dbf4-M4NB and Tof1 share the same binding surface on the NTD-A of Mcm4, and the binding site of Dbf4-M6NB on the NTD-A of Mcm6 overlaps that of Tof1.e, Binding surfaces of GINS on the NTD-As of Mcm3 and Mcm5 (PDB code 6SKL). f, Binding surfaces of Cdc45 on the NTD-As of Mcm2 and Mcm5 (PDB code 6SKL). g, Superimposition of the structures of DH-DDK and Dbf4-Motif N-Rad53-FHA (PDB code 5T2F) using Dbf4 Motif-N as a reference. h, Magnified view of the boxed region in (g). Note that different interfaces of Dbf4 motif N engage with Mcm2-NTD-A and Rad53-FHA. i, Side view of the replisome structure (PDB code 6SKL) displayed in cartoon, highlighting the NTD-A of Mcm2 as the only potential binding site for DDK on replisome. j Magnified view of the boxed region in (i). k, Superimposition of the replisome structure (PDB code 6SKL) with the DH-DDK using Mcm2-NTD-A as a reference. Note that the binding site of Dbf4 motif N on the NTD-A of Mcm2 does not overlap with Tof1. I, Magnified view of the boxed region in (k).

## **Supplementary Table 1 Summary of Cryo-EM Data Collection and Model Refinement**

|                                              | High-resolution DH<br>(EMD-32355)<br>(PDB 7W8G) | Free DH in ATP-γ-S<br>with structured<br>Mcm4-NSD<br>(EMDB-31684)<br>(PDB: 7V3U) | DH-DDK<br>(State I)<br>(EMDB-<br>31685)<br>(PDB:<br>7V3V) | DDK Kinase<br>Core<br>(EMDB-<br>31686) | Dbf4-<br>NTD+<br>Mcm2-<br>NTD-A<br>(EMDB-<br>31687) |
|----------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|-----------------------------------------------------|
| Data collection and process                  |                                                 |                                                                                  |                                                           |                                        |                                                     |
| Magnification                                | 130,000X                                        | 130,000X                                                                         | 81,000X                                                   |                                        |                                                     |
| Voltage (kV)                                 | 300                                             | 300                                                                              |                                                           | 300                                    |                                                     |
| Electron exposure (e-/Å <sup>2</sup> )       | 46/dose weighting                               | 46/dose<br>weighting                                                             | 46/dose weighting                                         |                                        |                                                     |
| Defocus range (μm)                           | 1-3.5                                           | 1-3.5                                                                            |                                                           | 1-3.5                                  |                                                     |
| Pixel size (Å)                               | 1.052                                           | 1.052                                                                            |                                                           | 1.06                                   |                                                     |
| Symmetry imposed                             | C2                                              | C1                                                                               |                                                           | C1                                     |                                                     |
| Initial particle images (no.)                | 973K                                            | 216K                                                                             |                                                           | 679K                                   |                                                     |
| Final particle images (no.)                  | 576K                                            | 150K                                                                             |                                                           | 258K                                   |                                                     |
| Map resolution (Å)                           | 2.52                                            | 3.2                                                                              | 2.9                                                       | 3.8                                    | 4.0                                                 |
| FSC threshold                                | 0.143                                           | 0.143                                                                            | 0.143                                                     | 0.143                                  | 0.143                                               |
| Refinement                                   |                                                 |                                                                                  |                                                           |                                        |                                                     |
| Initial model used (PDB code)                | 3JA8                                            | 7W8G                                                                             | 7W8G<br>6YA7<br>5T2F                                      |                                        |                                                     |
| Map sharpening $B$ factor $(\mathring{A}^2)$ | -60                                             | -80                                                                              | -50                                                       | -136                                   | -200                                                |
| Model composition                            |                                                 |                                                                                  |                                                           |                                        |                                                     |
| Non-hydrogen atoms                           | 62472                                           | 62658                                                                            | 68358                                                     |                                        |                                                     |
| Protein residues<br>Ligands                  | 7878                                            | 7900                                                                             | 8587                                                      |                                        |                                                     |
| Nucleotides                                  | 12                                              | 12                                                                               | 13                                                        |                                        |                                                     |
| ${ m Mg^{2+}} \ { m Zn^{2+}}$                | 12                                              | 12                                                                               | 12                                                        |                                        |                                                     |
| $Zn^{2+}$                                    | 10                                              | 10                                                                               | 11                                                        |                                        |                                                     |
| R.m.s. deviations                            |                                                 |                                                                                  |                                                           |                                        |                                                     |
| Bond lengths (Å)                             | 0.0039                                          | 0.0042                                                                           | 0.0042                                                    |                                        |                                                     |
| Bond angles (°)                              | 0.79                                            | 0.71                                                                             | 0.82                                                      |                                        |                                                     |
| Validation                                   |                                                 | 1.20                                                                             |                                                           |                                        |                                                     |
| MolProbity score                             | 1.35                                            | 1.38                                                                             | 1.47                                                      |                                        |                                                     |
| Clashscore                                   | 5.65                                            | 5.25                                                                             | 6.23                                                      |                                        |                                                     |
| Poor rotamers (%)                            | 0.04                                            | 0.03                                                                             | 0.07                                                      |                                        |                                                     |
| Ramachandran plot                            | 07.92                                           | 07.52                                                                            | 07.21                                                     |                                        |                                                     |
| Favored (%)                                  | 97.83                                           | 97.52                                                                            | 97.31                                                     |                                        |                                                     |
| Allowed (%) Disallowed (%)                   | 2.16<br>0.01                                    | 2.48<br>0.00                                                                     | 2.64<br>0.05                                              |                                        |                                                     |

## Supplementary Table 2 A summary of the structures determined in this study

| PDB and EMD<br>Codes  | PDB entry title                                                                    |  |  |
|-----------------------|------------------------------------------------------------------------------------|--|--|
| PDB-7V3U<br>EMD-31684 | Cryo-EM structure of MCM double hexamer with structured Mcm4-NSD                   |  |  |
| EMD-31701             | Cryo-EM structure of MCM double hexamer phosphorylated by DDK                      |  |  |
| PDB-7V3V<br>EMD-31685 | Cryo-EM structure of MCM double hexamer bound with DDK in State I                  |  |  |
| EMD-31696             | Cryo-EM structure of MCM double hexamer bound with DDK in State II                 |  |  |
| EMD-31688             | Cryo-EM structure of MCM double hexamer bound with two DDKs (Group I)              |  |  |
| EMD-31689             | Cryo-EM structure of MCM double hexamer bound with two DDKs (Group II)             |  |  |
| EMD-31690             | Cryo-EM structure of MCM double hexamer bound with two DDKs (Group III)            |  |  |
| EMD-31691             | Cryo-EM structure of MCM double hexamer bound with one DDK (Group IV)              |  |  |
| EMD-31692             | Cryo-EM structure of MCM double hexamer bound with one DDK (Group V)               |  |  |
| EMD-31699             | Cryo-EM structure of mutant MCM double hexamer (Mcm4ΔN140)                         |  |  |
| EMD-31700             | Cryo-EM structure of mutant MCM double hexamer (Mcm4ΔN174)                         |  |  |
| EMD-31694             | Cryo-EM structure of mutant MCM double hexamer (Mcm4∆140) bound with DDK           |  |  |
| EMD-31695             | Cryo-EM structure of mutant MCM double hexamer (Mcm4ΔN174) bound with DDK (Δ174)   |  |  |
| EMD-31686             | Cryo-EM map of DDK subtracted from DH-DDK complex                                  |  |  |
| EMD-31697             | Cryo-EM map of Dbf4-NTD engaged with Mcm2-NTD-A subtracted from the DH-DDK complex |  |  |
| PDB-7W8G<br>EMD-32355 | Cryo-EM structure of MCM double hexamer                                            |  |  |

## Supplementary Table 3 Yeast strains used in this study

| Strain | Genotype                                                  | Source      |
|--------|-----------------------------------------------------------|-------------|
| 304    | MATa ade2-1 trp1-1 leu2-3,112 his3- 11,15 ura3-1 can1-100 | This study  |
|        | bar1\Delta::natNT                                         |             |
| 305    | MATa ade2-1 trp1-1 leu2-3,112 his3- 11,15 ura3-1 can1-100 | This study  |
|        | bar1∆::natNT MCM7-3xFlag-phpNT1                           |             |
| ySDK   | MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100, | Diffley lab |
|        | pep4 ∆::KanMX, trp1::TRP1pRS304CDC7, CBP-DBF4             | (On et al., |
|        |                                                           | 2014)       |
| 306    | MATa ade2-1 trp1-1 leu2-3,112 his3- 11,15 ura3-1 can1-100 | This study  |
|        | bar1∆::natNT MCM7-TEV-3xFlag-phpNT1 mcm4::KanMX-          |             |
|        | ADH-mcm4 ΔN2-140                                          |             |
| 307    | MATa ade2-1 trp1-1 leu2-3,112 his3- 11,15 ura3-1 can1-100 | This study  |
|        | bar1∆::natNT MCM7-TEV-3xFlag-phpNT1 mcm4::KanMX-          |             |
|        | ADH-mcm4 ΔN2-174                                          |             |
| 308    | MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100, | This study  |
|        | pep4 ∆::KanMX, trp1::TRP1pRS304CDC7, CBP-DBF4,            |             |
|        | leu2::LEU2pRS405 3xFlag-DBF4                              |             |
| 309    | MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100, | This study  |
|        | pep4 ∆::KanMX, trp1::TRP1pRS304CDC7, CBP-DBF4,            |             |
|        | leu2::LEU2pRS405 3xFlag-DBF4∆105-221                      |             |
| 310    | MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100, | This study  |
|        | pep4 Δ::KanMX, trp1::TRP1pRS304CDC7, CBP-DBF4,            |             |
|        | leu2::LEU2pRS405 3xFlag-DBF4∆231-259                      |             |
| 311    | MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100, | This study  |
|        | pep4 ∆::KanMX, trp1::TRP1pRS304CDC7, CBP-DBF4,            |             |
|        | leu2::LEU2pRS405 3xFlag-DBF4∆500-515                      |             |
| 312    | MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100, | This study  |
|        | pep4 ∆::KanMX, trp1::TRP1pRS304CDC7, CBP-DBF4,            |             |
|        | leu2::LEU2pRS405 3xFlag-DBF4∆516-534                      |             |